Chapter 22. Introduction
to Parallel
Programming

22.0 Why Think Parallel?

In recent years we Numerical Recipes authors have increasingly becom
convinced that a certain revolution, cryptically denoted by the words “parallel
programming,” is about to burst forth from its gestation and adolescence in theg
community of supercomputer users, and become the mainstream methodology fog
all computing. S

Let’s review the past: Take a screwdriver and open up the computer (workstation3
or PC) that sits on your desk. (Don’t blame us if this voids your warranty; and
be sure to unplug it first!) Count the integrated circuits — just the bigger ones,
with more than a million gates (transistors). As we write, in 1995, even lowly
memory chips have one or four million gates, and this number will increase rapldly
in coming years. You'll probably count at least dozens, and often hundreds, of
such chips in your computer.

Next ask, how many of these chips are CPUs? That is, how many implement vo
Neumann processors capable of executing arbitrary, stored program code? For mo
computers, in 1995, the answer is: about one. A significant number of computer
do have secondary processors that offload input-output and/or video functions. So
two or three is often a more accurate answer, but only one is usually under th
user’s direct control.

Why do our desktop computers have dozens or hundreds of memory chips, buf
most often only one (user-accessible) CPU? Do CPU chips intrinsically cost more!
to manufacture? No. Are CPU chips more expensive than memory chips? Yes
primarily because fixed development and design costs must be distributed over
smaller number of units sold. We have been in a kind of economic equilibrium: ¢
CPUr's are relatively expensive because there is only one per computer; and there i
only one per computer, because they are relatively expensive.

Stabilizing this equilibrium has been the fact that there has been no standard, or
widely taught, methodology for parallel programming. Except for the special case of
scientific computing on supercomputers (where large problems often have a regular
or geometric character), it is not too much of an exaggeration to say that nobody
really knows how to program multiprocessor machines. Symmetric multiprocessor

ouaul® YUON) £212-228-008-T 11€9 10 Woo'Iu mmw/:dny

1SNJ108lIp 01 |rewa plol

eTHASS

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadiday [edllswny Japio o] ‘pauqgiyold /(poms sl ‘Jaindwod Jan1as Aue 03 (suo siyy Buipnjour) saji ajgepesal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

t

16° ebﬂﬁjqw

FpISINo

(eombwv YUON

)

962

“aremyos sadiay [eauswinN Aq 966T-986T (D) WBUAdoD sweibold "ssaid Ausianun abpuqwe)d Aq 966T-986T (D) WbLAdOD
(0-6£7725-T25-0 NgSI) Bunndwod aunusids 137TvHYd 40 WY IHL (06 NVHLHO4 NI S3dID3Y TvII4INNN woly abed sidwes



22.0 Why Think Parallel? 963

operating systems, for example, have been very slow in developing; and efficient,
parallel methodologies for query-serving on large databases are even now a subject
of continuing research.

However, things are now changing. We consider it an easy prognostication that,
by the first years of the new century, the typical desktop computer will have 4 to 8
user-accessible CPUs; ten years after that, the typical number will be between 16 an
512. It is not coincidence that these numbers are characteristic of supercomputers
(including some quite different architectures) in 1995. The rough rule of ten years’
lag from supercomputer to desktop has held firm for quite some time now.

Scientists and engineers have the advantage that techniques for parallel co
putation in their disciplineshave already been developed. With multiprocessor
workstations right around the corner, we think that now is the right time for scientists
and engineers who use computers to gtanking parallel. We don’t mean that you
should put an axe through the screen of your fast serial (single-CPU) workstation.
We do mean, however, that you should start programming somewhat dn‘ferently
on that workstation, indeed, start thinking a bit differently about the way that you
approach numerical problems in general.

In this volume ofNumerical Recipes in Fortran, our pedagogical goal is to
show you that there are conceptual and practical benefits in parallel thinking, eve
if you are using a serial machine today. These benefits include conciseness ang
clarity of code, reusability of code in wider contexts, and (not insignificantly)
increased portability of code to today’s parallel supercomputers. Of course, onz
parallel machines, either supercomputers today or desktop machines tomorrow, the
benefits of thinking parallel are much more tangible: They translate into significant$
improvements in efficiency and computational capability.
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Thinking Parallel with Fortran 90

Until very recently, a strong inhibition to thinking parallel was the lack of any
standard, architecture-independent, computer language in which to think. That ha
changed with the finalization of the Fortran 90 language standard, and with th
availability of good, optimizing Fortran 90 compilers on a variety of platforms.

There is a significant body of opinion (with which we, however, disagree) that
there is no such thing as architecture-independent parallel programming. Proponen
of this view, who are generally committed wizards at programming on one or another=
particular architecture, point to the fact that algorithms that are optimized to on
architecture can run hundreds of times more slowly on other architectures. An
they are correct!

Our opposing point of view is one of pragmatism. We think that it is not
hard to learn, in a general way, what kinds of architectures are in general use, an
what kinds of parallel constructions work well (or poorly) on each kind. With this
knowledge (much of which we hope to develop in this book) the user can, we think,
write good, general-purpose parallel code that works on a variety of architectures —
including, importantly, on purely serial machines. Equally important, the user will
be aware of when certain parts of a code can be significantly improved on some,
but not other, architectures.

Fortran 90 is a good test-bench for this point of view. It is not the perfect
language for parallel programming. But it & language, and it is the only
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964 Chapter 22.  Introduction to Parallel Programming

cross-platformstandard language now available. The committee that developed
the language between 1978 and 1991 (known technically as X3J3) had strong
representation from both a traditional “vectorization” viewpoint (e.g., from the Cray
XMP and YMP series of computers), and also from the “data parallel” or “SIMD”
viewpoints of parallel machines like the CM-2 and CM-5 from Thinking Machines,
Inc. Language compromises were made, and a few (in our view) almost essentia
features were left out (s€22.5). But, by and large, the necessary tools are there: If
you learn to think parallel in Fortran 90, you will easily be able to transfer the skill
to future parallel standards, whether they are Fortran-based, C-based, or other.

CITED REFERENCES AND FURTHER READING:
Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

22.1 Fortran 90 Data Parallelism: Arrays
and Intrinsics
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The underlying model for parallel computation in Fortran 98sita parallelism,
implemented by the use of arrays of data, and by the provision of operations andj
intrinsic functions that act on those arrays in parallel, in a manner optimized by

IS:

e.g.), but this will be hidden from the Fortran 90 user. Some extensions of Fortran
90, like HPF, do implement MIMD features explicitly; but we will not consider these
in this book. Fortran 95’'€orall andPURE extensions (se§21.6) will allow some
significantly greater access to MIMD features (§882.5).
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the compiler for each particular hardware architecture. We will not try to draw a 2
fine definitional distinction between “data parallelism” and so-called SIMD (single %
instruction multiple data) programming. For our purposes the two terms mean aboug
the same thing: The programmer writes a single operatigrsdy, and the compiler & o
causes it to be carried out on multiple pieces of data in as parallel a manner as thg g
underlying hardware allows. gé
Any kind of parallel computing that is not SIMD is generally called MIMD %g
(multiple instruction multiple data). A parallel programming language with MIMD g “;—;
features might allow, for example, several different subroutines — acting on different% 2
parts of the data — to be called into execution simultaneously. Fortran 90 has few, i j?g
any, MIMD constructions. A Fortran 90 compiler might, on some machines, executeg g
MIMD code in implementing some Fortran 90 intrinsic functiopsdk or unpack, §§
g9
o
X
o
5
<
2}
3
8.
Z

Array Parallel Operations

We have already met the most basic, and most important, parallel facility of
Fortran 90, namely, the ability to use whole arrays in expressions and assignments,
with the indicated operations being effected in parallel across the array. Suppose,
for example, we have the two-dimensional matriee®, andc,

REAL, DIMENSION(30,30) :: a,b,c
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22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 965

Then, instead of the serial construction,

do j=1,30
do k=1,30
c(§,0)=a(j,k)+b(j,k)
end do
end do

which is of course perfectly valid Fortran 90 code, we can simply write
c=a+b

The compiler deduces from the declaration statementasthiatandc are matrices,
and what their bounding dimensions are.

Let us dwell for a moment on the conceptual differences between the serialg
code and parallel code for the above matrix addition. Although one is perhapsg
used to seeing the nested do-loops as simply an idiom for “do-the-enclosed-on-ally &
components,” it in fact, according to the rules of Fortran, specifies a very particular S
time-ordering for the desired operations. The matrix elements are added by rows, i
order (j=1, 30), and within each row, by columns, in ordés=( , 30).

In fact, the serial code aboweer specifiesthe desired task, since it is guaranteed
by the laws of mathematics that the order in which the element operations are don
is of no possible relevance. Over the 50 year lifetime of serial von Neuman
computers, we programmers have been brainwashed to break up all problems int
single executable streanis the time dimension only. Indeed, the major design
problem for supercomputer compilers for the last 20 years has beamdosuch
serial constructions and recover the underlying “parallel thoughts,” for execution in £
vector or parallel processors. Now, rather than taking this expensive detour into ang
out of serial-land, we are asked simply to say what we mean in the first placey.

The essence of parallel programmingis not to force “into the time dimen-
sion” (i.e, to serialize) operations that naturally extend across a span of data,
that is, “in the space dimension.” If it were not for 50-year-old collective habits,
and the languages designed to support them, parallel programming would probabl
strike us as more natural than its serial counterpart.
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Broadcasts and Dimensional Expansion: SSP vs. MMP

abpuques@nia

We have previously mentioned the Fortran 90 rule that a scalar variable is;
conformable with any shape array. Thus, we can implement a calculation such as

Yi = T; + 5, i=1,....n (22.1.3)

with code like

y=x+s

‘(eauawy YuoN apisino) Bio

where we of course assume previous declarations like

REAL(SP) :: s
REAL(SP), DIMENSION(n) :: x,y

with n a compile-time constant or dummy argument. (Hereafter, we will omit the
declarations in examples that are this simple.)

This seemingly simple construction actually hides an important underlying
parallel capability, namely, that bfcadcast. The sums iry=x+s are done in parallel
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966 Chapter 22.  Introduction to Parallel Programming

on different CPUs, each CPU accessing different component&nfly. Yet, they

all must access the same scalar valuéf the hardware has local memory for each
CPU, the value of must be replicated and transferred to each CPU'’s local memaory.
On the other hand, if the hardware implements a single, global memory space, it is
vital to do something that mitigates the traffic jam potentially caused by all the CPUs
trying to access the same memory location at the same time. (We will use the term
“broadcast” to refer equally to both cases.) Although hidden from the user, Fortran

dny

90’s ability to do broadcasts is an essential feature of it as a parallel language. §
Broadcasts can be more complicated than the above simple example. Consideg, =

for example, the calculation g

wi:Z|xi+Ij|, i=1,...,n (22.1.2 8

=1 %

@

oo

N

Here, we are doing? operations: For each of values ofi there is a sum over
n values ofj.
Serial code for this calculation might be
do i=1,n
w(i)=0.
do j=1,n
w(i)=w(i)+abs(x(i)+x(j))
end do
end do

The obvious immediate parallelization in Fortran 90 uses sthe intrinsic
function to eliminate the inner do-loop. This would be a suitable amount of
parallelization for a small-scale parallel machine, with a few processors:

do i=1,n

w(i)=sum(abs (x(i)+x))
end do

Notice that the conformability rule implies that a new valuexdt ), a scalar, is
being broadcast to all the processors involved ireftreandsum, with each iteration
of the loop overi.

What about the outer do-loop? Do we need, or want, to eliminate it, too? &
That depends on the architecture of your computer, and on the tradeoff betweer;
time and memory in your problem (a common feature of all computing, no less
so parallel computing). Here is an implementation that is free of all do-loops,
in principle capable of being executed in a small number (independen} of
parallel operations:

REAL(SP), DIMENSION(n,n) :: a
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a
w

spread(x,dim=2,ncopies=n)+spread(x,dim=1,ncopies=n)
sum(abs(a) ,dim=1)

This is an example of what we calimensional expansion, as implemented by
the spread intrinsic. Although the above may strike you initially as quite a cryptic
construction, it is easy to learn to read it. In the first assignment line, a matrix is
constructed with all possible valuesofi)+x(j). In the second assignment line,
this matrix is collapsed back to a vector by applying the sum operation to the absolute
value of its elements, across one of its dimensions.
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22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 967

More explicitly, the first line creates a matrixby adding two matrices each
constructed viaspread. In spread, thedim argument specifies which argument
is duplicated, so that the first termaries across its first (row) dimension, and vice
versa for the second term:

Qi = Ty —|—£Cj

r1 T1 I e r1 T I3 .
Xo T T2 ... xr1 T2 X3 ... (ZZJHS
= r3 I3 T3 ... + Tr1 T I3

Since equation (22.1.2) above is symmetri¢ andj, it doesn't really matter what
value ofdim we put in thesum construction, but the valug¢im=1 corresponds to
summing across the rows, that is, down each column of equation (22.1.3).

Be sure that you understand that theread construction changed afi(n)
memory requirement into a@(n?) one! If your values ofn are large, this is an
impossible burden, and the previous implementation with a single do-loop remain
the only practical one. On the other hand, if you are working on a massively paralle
machine, whose number of processors is comparabié t@r at least much larger
thann), then thespread construction, and the underlying broadcast capability that
it invokes, leads to a big win: Alh? operations can be done in parallel. This
distinction between small-scale parallel machines — which we will hereafter refer
to as SSP machines — and massively multiprocessor machines — which we will
refer to adMIMP machines — is an important one. A main goal of parallelism is to
saturate the available number of processors, and algorithms for doing so are ofte
differentin the SSP and MMP opposite limits. Dimensional expansion is one method
for saturating processors in the MMP case.
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Masks and “Index Loss”

An instructive extension of the above example is the following case of a product
that omits one term (the diagonal one):

w; = H(xj—:ci), i=1,...,n (22.1.4
,;,

L.
S5

Formulas like equation (22.1.4) frequently occur in the context of interpolation,
where all thezx;’s are known to be distinct, so let us for the moment assume that
this is the case.

Serial code for equation (22.1.4) could be

‘(eauBWyY YUON apisino) Bio abpugued@AIasisnoloalip 0}

do i=1,n
w(i)=1.0_sp
do j=1,n
if (G /= 1) w(@)=w(@)*(x(G)-x(1))
end do
end do

Parallel code for SSP machines, or for large enougbhn MMP machines,
could be
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968 Chapter 22.  Introduction to Parallel Programming

do i=1,n
w(i)=product( x-x(i), mask=(x/=x(i)) )
end do

Here, thenask argument in theroduct intrinsic function causes the diagonal term
to be omitted from the product, as we desire. There are some features of this code,
however, that bear commenting on.

First, notice that, according to the rules of conformability, the expression
x/=x(i) broadcasts the scalar(i) and generates a logical array of length
suitable for use as mask in the product intrinsic. It is quite common in Fortran
90 to generate masks “on the fly” in this way, particularly if the mask is to be
used only once.

Second, notice that thgindex has disappeared completely. It is now implicit
in the two occurrences of (equivalent tox(1:n)) on the right-hand side. With
the disappearance of thieindex, we also lose the ability to do the test brand
j, but must use, in essence(i) andx(j) instead! That is a very general feature
in Fortran 90: when an operation is done in parallel across an array, thaece is
associated index available within the operation. This “index loss,” as we will see in
later discussion, can sometimes be quite an annoyance.

A language construction present in CM [Connection Machine] Fortran, the
so-calledforall, which would have allowed access to an associated index in many 3
cases, was eliminated from Fortran 90 by the X3J3 committee, in a controversial
decision. Such a construction will come into the language in Fortran 95.

What about code for an MMP machine, where we are willing to use dimensional
expansion to achieve greater parallelism? Here, we can write,

Y YUON) £2172-2/8-008-T (19 10 09" 1u"mmm/:dny

a
w

spread(x,dim=2,ncopies=n)-spread(x,dim=1,ncopies=n)
product(a,dim=1,mask=(a/=0.))

This time it does matter that the value @fm in the product intrinsic is 1 rather
than2. If you write out the analog of equation (22.1.3) for the present example,
you'll see that the above fragment is the right way around. The problem of index
loss is still with us: we have to construct a mask from the agrapot from its
indices, both of which are now lost to us!

In most cases, there are workarounds (more, or less, awkward as they may be}

for the problem of index loss. In the worst cases, which are quite rare, you have to&
create objects to hold, and thus bring back into play, the lost indices. For example,

20 [©AISSISNO10BIP 0] [rews puas Jo ‘(Ajuo

INTEGER(I4B), DIMENSION(n) :: jj

jj = (/ (i,i=1,n) /)
do i=1,n

w(i)=product( x-x(i), mask=(jj/=i) )
end do

‘(eauawy YuoN apisino) Bio'a
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Now the arrayjj is filled with the “lost” j index, so that it is available for use in
the mask. A similar technique, involving spreadsjgf can be used in the above
MMP code fragment, which used dimensional expansion. (Fortranf¥a’s1l
construction will make index loss much less of a problem. §xe6.)

Incidentally, the above Fortran 90 constructid@u, (i,i=1,n) /), is called
anarray constructor with implied do list. For reasons to be explained§g2.2, we
almost never use this construction, in most cases substituting a Numerical Recipes
utility function for generating arithmetical progressions, which we gath.
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22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 969

Interprocessor Communication Costs

It is both a blessing and a curse that Fortran 90 completely hides from the user
the underlying machinery of interprocessor communication, that is, the way that data
values computed by (or stored locally near) one CPU make their way to a different
CPU that might need them next. The blessing is that, by and large, the Fortran 90
programmer need not be concerned with how this machinery works. If you write

a(1:10,1:10) = b(1:10,1:10) + c(10:1:-1,10:1:-1)

Jurmmay/:dny

the required upside-down-and-backwards values of the arrase justthere, no ,
matter that a great deal of routing and switching may have taken place. An ancillary§
blessing is that this book, unlike so many other (more highly technical) books on g
parallel programming (see references below) need not be filled with complex and®
subtle discussions of CPU connectivity, topology, routing algorithms, and so on. '9;0
The curse is, just as you might expect, that the Fortran 90 programmer can’ty
control the interprocessor communication, even when it is desirable to do so. AN
few regular communication patterns are “known” to the compiler through Fortran
90 intrinsic functions, for example=transpose(a). These, presumably, are
done in an optimal way. However, many other regular patterns of communication, =
which might also allow highly optimized implementations, don’t have corresponding
intrinsic functions. (An obvious example is the “butterfly” pattern of communication
that occurs in fast Fourier transforms.) These, if coded in Fortran 90 by using
general vector subscripts (e.parr=arr (iarr) orbarr (jarr)=arr, whereiarr
andjarr are integer arrays), lose all possibility of being optimized. The compiler
can'’t distinguish a communication step with regular structure from one with general2
structure, so it must assume the worst case, potentially resulting in very slowS
execution. =
About the only thing a Fortran 90 programmer can do is to start with a general
awareness of the kind of apparently parallel constructionsnigitt be quite slow
on his/her parallel machine, and then to refine that awareness by actual experien
and experiment. Here is our list of constructions most likely to cause interprocesso
communication bottlenecks:
e vector subscripts, lik®arr=arr(iarr) or barr(jarr)=arr (that is,
general gather/scatter operations)
e the pack andunpack intrinsic functions
e mixing positive strides and negative strides in a single expression (as in
the abover(1:10,1:10)+c(10:1:-1,10:1:-1))
e thereshape intrinsic when used with therder argument
e possibly, thecshift and eoshift extrinsics, especially for nonsmall
values of the shift.
On the other hand, the fact is that these constructomparallel, andare there
for you to use. If the alternative to using them is strictly serial code, you should +
almost always give them a try.
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Linear Algebra

You should be alert for opportunities to use combinations of themul,
spread, anddot_product intrinsics to perform complicated linear algebra calcu-
lations. One useful intrinsic that is not provided in Fortran 90 isalter product
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of two vectors,
Cij = CLibj (2215

We already know how to implement this (cf. equation 22.1.3):

c = spread(a,dim=2,ncopies=size(b))*spread(b,dim=1,ncopies=size(a))

//:dny

In fact, this operation occurs frequently enough to justify making it a utility function,
outerprod, which we will do in Chapter 23. There we also define other “outer”
operations between vectors, where the multiplication in the outer product is replaced
by another binary operation, such as addition or division.

Here is an example of using these various functions: Many linear algebras
routines require that a submatrix be updated according to a formula like

0 Wod

m
ajk :ajk—i-biajiZapiapk, j=t4,....m, k=1,...,n (22.1.9
p=1

wherei,m,l, andn are fixed values. Using an array slice lik€:,i) to turn
ap; into a vector indexed by, we can code the sum withmsatmul, yielding a
vector indexed byk:

temp(l:n)=b(i)*matmul(a(i:m,i),a(i:m,1l:n))

Here we have also included the multiplicationfgy a scalar for fixed. The vector
temp, along with the vecton;; = a(:,1), is then turned into a matrix by the
outerprod utility and used to increment ;:

a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),temp(1l:n))

Sometimes the update formula is similar to (22.1.6), but with a slight permutation of
the indices. Such cases can be coded as above if you are careful about the order
the quantities in th@atmul and theouterprod.

f
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22.2 Linear Recurrence and Related
Calculations

We have already seen that Fortran 9&'say constructor with implied do list
can be used to generate simple series of integers(Jikéi,i=1,n) /). Slightly
more generally, one might want to generate an arithmetic progression, by the formul

vi =b+ (j — 1)a, ji=1,...,n (22.2.]

This is readily coded as

“(Aluo eanewy YLON) €2P.-2.8-008-T I€2 10 WOD" I MmwW/:dny
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v(1l:n) = (/ (b+(j-1)*a, j=1,n) /)

Although it is concise, and validye don't like this coding. The reason is that
it violates the fundamental rule of “thinking parallel”: it turns a parallel operation
across a data vector into a serial do-loop over the components of that vector. Yes, w
know that the compiler might be smart enough to generate parallel code for |mpI|ed
do lists; but it also mightot be smart enough, here or in more complicated examples.
Equation (22.2.1) is also the simplest example &ihear recurrence relation.
It can be rewritten as

11D OXPRWS PUSS J0

vy = b, v; =vj_1 +a, ji=2,...,n (22.2.2

In this form (assuming that, in more complicated cases, one doesn’t know an explici
solution like equation 22.2.1) one can’t write an explicit array constructor. Code like

v(1)

=b
v(2:n) =

(/ w(j-1)+a,j=2,n) /) ! wrong

is legal Fortran 90 syntax, but illegal semantics; it doasdo the desired recurrence!

(The rules of Fortran 90 require that all the components of the right-hand side

be evaluated before any of the components on the left-hand side are set.) Yet, as w

shall see, techniques for accomplishing the evaluation in parallel are available.
With this as our starting point, we now survey some particular tricks of the

(parallel) trade.
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Subvector Scaling: Arithmetic and Geometric Progressions

For explicit arithmetic progressions like equation (22.2.1), the simplest parallel
technique issubvector scaling [1]. The idea is to work your way through the desired
vector in larger and larger parallel chunks:

vy =b
vo=b+a
V3.4 =012+ 2a
V5.8 = V1.4 + 4a
vg..16 = V1.8 + 8a (22.2.3

008-T |29 10 WO Ju*mmm//:dny

And so on, until you reach the length of your vector. (The last step will not
necessarily go all the way to the next power of 2, therefore.) The powers of 2, g
timesa, can of course be obtained by successive doublings, rather than the explici
multiplications shown above.

You can see that subvector scaling requires alogytn parallel steps to process
a vector of lengtm. Equally important for serial machines, or SSP machines, the
scalar operation count for subvector scaling is no worse than entirely serial code
each new component; is produced by a single addition.

If addition is replaced by multiplication, the identical algorithm will produce
geometric progressions, instead of arithmetic progressions. In Chapter 23, we wi
use subvector scaling to implement our utility functiennsh andgeop for these
two progressions. (You can then call one of these functions instead of recodin
equation 22.2.3 every time you need it.)

0 TA|UO e YUON) £27/78/8

Vector Reduction: Evaluation of Polynomials

Logically related to subvector scaling is the case where a calculation can b
parallelized across a vector thdtrinks by a factor of 2 in each iteration, until a
desiredscalar result is reached. A good example of this is the parallel evaluation
of a polynomial2]

N

P(z) =Y ¢;al (22.2.49

=0

For clarity we take the special case §f = 5. Start with the vector of coefficients
(imagining appended zeros, as shown):
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cp, €1, C2, C3, C4y C5, O,
Now, add the elements by pairs, multiplying the second of each pair by
co+cix, co+csx, cq4+csx, O,
Now, the same operation, but with the multipliet:

(co + c1z) + (e + ezx)z?,  (cq + csz) + (0)z2, 0,
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And a final time, with multiplierz*:
[(co+ c12) + (co + czz)2?] + [(ca + cs2) + (0)2%]2?, 0,

We are left with a vector of (active) length 1, whose value is the desired polynomial
evaluation. (You can see that the zeros are just a bookkeeping device for takin
account of the case where the active subvector has odd length.) The key pointis th
the combining by pairs is a parallel operation at each stage.

As in subvector scaling, there are abdog, n parallel stages. Also as in
subvector scaling, our total operations count is only negligibly different from purely
scalar code: We do one add and one multiply for each original coefficienThe
only extra operations arlg, n successive squarings af but this comes with
the extra benefit of better roundoff properties than the standard scalar coding. |
Chapter 23 we use vector reduction to implement our utility functemy for
polynomial evaluation.

&y

-T|[29 10 WO9" U MMM/

Recursive Doubling: Linear Recurrence Relations

V YUON) £2/-2/8-008

Please don't confuse our use of the word “recurrence” (as in “recurrence
relation,” “linear recurrence,” or equation 22.2.2) with the words “recursion” and
“recursive,” which both refer to the idea of a subroutine calling itself to obtain an
efficient or concise algorithm. There are ample grounds for confusion, becaus
recursive algorithms are in fact a good way of obtaining parallel solutions to linear
recurrence relations, as we shall now see!

Consider the general first order linear recurrence relation

(ﬂ?uo LRIIET]
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U; = aj +bj,1’UJj,1, j = 2,3,...,TL (2225

with initial valueu; = a;. On a serial machine, we evaluate such a recurrence with
a simple do-loop. To parallelize the recurrence, we can employ the powerful genera
strategy ofrecursive doubling. Write down equation (22.2.5) f@j and for2;j — 1:

3T1SN0108IP 0] [IeWS PUasS J0

Ugj = agj + bzj-1u2j1 (22.2.6

Ugj—1 = G2j—1 + baj_ouzj_2 (22.2.7)
Substitute equation (22.2.7) in equation (22.2.6) to eliminate.; and get
ug; = (agj + agj—1b2j—1) + (baj_2boj_1)uz; 2 (22.2.8

This is a new recurrence of the same form as (22.2.5) but over only the.gyemd
hence involving onlyn/2 terms. Clearly we can continue this process recursively,
halving the number of terms in the recurrence at each stage, until we are left with a
recurrence of length 1 or 2 that we can do explicitly. Each time we finish a subpart of
the recursion, we fill in the odd terms in the recurrence, using equation (22.2.7). In
practice, it's even easier than it sounds. Turn to Chapter B5 to see a straightforward
implementation of this algorithm as the recipecuri.

On a machine with more processors thgrall the arithmetic at each stage of
the recursion can be done simultaneously. Since there are oflogdestages in the
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recursion, the execution time@(log n). The total number of operations carried out
is ofordern +n/2+n/4+ --- = O(n), the same as for the obvious serial do-loop.
In the utility routines of Chapter 23, we will use recursive doubling to
implement the routinesoly_term, cumsum, andcumprod. We could use recursive
doubling to implement parallel versionsafth andgeop (arithmetic and geometric
progressions), androots_unity (complexnth roots of unity), but these can be

done slightly more efficiently by subvector scaling, as discussed above. 5
Cyclic Reduction: Linear Recurrence Relations %

There is a variant of recursive doubling, callegtlic reduction, that can be §
implemented with a straightforward iteration loop, instead of a recursive procedureg
call. [3] Here we start by writing down the recurrence (22.2.5)badjacent terms -

u; andwu;_; (not just the even ones, as before). Eliminating ;, just as in
equation (22.2.8), gives

u; = (aj + aj—1bj—1) + (bj—2bj—1)u;—2 (22.2.9

which is a first order recurrence with new coefficientsandb’. Repeating this
process gives successive formulas 4grin terms ofu;_s, u;_4, uj_g.... The
procedure terminates when we reagh ,, (for n a power of 2), which is zero for all
j. Thus the last step gives; equal to the last set of’'s.

Here is a code fragment that implements cyclic reduction by direct iteration. $
The quantities:; are stored in the variabteecur1.

(Ajuo eauBWY YUON) £21.-2/8-008

recurl=a
bb=b
j=1
do
if (j >= n) exit
recurl(j+1:n)=recurl(j+1:n)+bb(j:n-1)*recuri(1:n-j)
bb(2%j:n-1)=bb(2%j:n-1)*bb(j:n-j-1)
3=2%]
enddo
In cyclic reduction the length of the vector; that is updated at each stage does
not decrease by a factor of 2 at each stage, but rather only decreases frota
~ n/2 during alllog, n stages. Thus the total number of operations carried out is
O(nlogn), as opposed t@(n) for recursive doubling. For a serial machine or SSP
machine, therefore, cyclic reduction is rarely superior to recursive doubling when
the latter can be used. For an MMP machine, however, the issue is less clear cu
because the pattern of communication in cyclic reduction is quite different (and, for
some parallel architectures, possibly more favorable) than that of recursive doublings. -
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Second Order Recurrence Relations
Consider the second order recurrence relation
Y; = aj =+ bj—23/j—1 + Cj—2Yj—2, j =3, 47 o, n (22210

with initial values

Y1 = aq, Y2 a9 (2221$
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22.2 Linear Recurrence and Related Calculations 975

Our labeling of subscripts is designed to make it easy to enter the coefficients in a
computer program: You need to supply, . .., ay, b1,...,b,_2, @andcy, ..., cp_s.
Rewrite the recurrence relation in the forni8])

()= (o) # (ol i) () a=2n
Yj+1 aj1 ¢j—1 bj—1 Y;

(22.2.12
that is,
szaj—l—bj_l'uj‘_l, ji=2,...,n—1 (22213
where
o yj o O o O 1 ) .
u, = a = b,_1 = =2,....,n—1
! (%‘H)’ ’ (%‘H)’ = (le bja ) T "
(22.2.14
and

Uy =a = (Z;) = (Z;) (22.2.15

This is a first order recurrence relation for the vectors and can be solved by
the algorithm described above (and implemented in the reciper1). The only
difference is that the multiplications are matrix multiplications with2he2 matrices
b;. After the first recursive call, the zeros @&andb are lost, so we have to write
the routine for general two-dimensional vectors and matrices.

Note that this algorithm does not avoid the potential instability problems
associated with second order recurrences that are discussgdSirof Volume
1. Also note that the algorithm generalizes in the obvious way to higher-order
recurrences: Amth order recurrence can be written as a first order recurrence
involving n-dimensional vectors and matrices.

Ip 01 |rewa puss 10 ‘(Ajuo eauawy YUON) £Zt/-2/8-008-T I[ed 10 Wod"uMmmm//:dny

Parallel Solution of Tridiagonal Systems

pLqweI@AISSISN0108l

Closely related to recurrence relations, recursive doubling, and cyclic reductionz:
is the parallel solution of tridiagonal systems. Since Fortran 90 vectors “know ¢
their own size,” it is most logical to number the components of both the sub- and
super-diagonals of the tridiagonal matrix franto N — 1. Thus equation (2.4.1),
here written in the special case 8f= 7, becomes (blank elements denoting zero),

ab
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The basic idea for solving equation (22.2.16) on a parallel computer is to
partition the problem into even and odd elements, recurse to solve the former, and
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then solve the latter in parallel. Specifically, we first rewrite (22.2.16), by permuting

its rows and columns, as

" by
b3
bs
bz
ayp C2
as €4
L as Cg

Now observe that, by row operations that subtract multiples of the first four
rows from each of the last three rows, we can eliminate all nonzero elements in
the lower-left quadrant. The price we pay is bringing some new elements into the
lower-right quadrant, whose nonzero elements we nowslly’s, andz’s. We call
the modified right-hand sides The transformed problem is now

by
b3
bs
bz

Notice that the last three rows form a new, smaller, tridiagonal problem, which
we can solve simply by recursing! Once its solution is known, the first four rows can 3
be solved by a simple, parallelizable, substitution. This algorithm is implemented &

in tridag in Chapter B2.

The above method is essentially cyclic reduction, butin the case of the tridiagona%
problem, it does not “unwind” into a simple iteration; on the contrary, a recursive g
subroutine is required. For discussion of this and related methods for paraIIeIizingf
tridiagonal systems, and references to the literature, see Hockney and Je8shope

Recursive doubling can also be used to solve tridiagonal systems, the metho
requiring the parallel solution (as above) of both a first order recurrence and a secon
order recurrencg.4]. For tridiagonal systems, however, cyclic reduction is usually

C1
a2 C3
(e2]
ba
by

C1

az C3
Qa4

Yy~

1 Y2
T2

C5
ae

be

a6

Z2
Y3

more efficient than recursive doubling.
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ur
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T1
T3
Ts5
r7
T2
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T
r3
rs
g
q1
q2
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:dny

(22.2.17

-2/8-008-T [[ed 10 WO Ju" MMMW//

(22.2.18

p 0} |rewa puas Jo ‘(Ajuo eouBWY YUON) €21/

)

9sIsSn

‘(eouBWY YUON apisied) BR-abp
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad
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22.3 Parallel Synthetic Division and Related
Algorithms

There are several techniques for parallelization that relate to synthetic division
but that can also find application in wider contexts, as we shall see.

Cumulants of a Polynomial
Suppose we have a polynomial
N
P(z) = cjaN (22.3.1
7=0

(Note that, here, the;’s are indexed from highest degree to lowest, the reverse of
the usual convention.) Then we can define ¢heulants of the polynomial to be
partial sums that occur in the polynomial’s usual, serial evaluation,

P():CO

P =cox+c1

‘(Aluo eouBWY YUON) £21/-2/8-008-T |[€2 JO Wod Ju mmm//:dny

Py =cozV 4+ -+ en = P(x) (22.3.2
Evidently, the cumulants satisfy a simple, linear first order recurrence relation,

Py = ¢y, P; =cj+xPj_q, 7=2,...,N (2233

STSN0103JIP 01 [leWwa puss 1o

This is slightly simpler than the general first order recurrence, because the value o
2 does not depend op We already know, fron$22.2’s discussion of recursive
doubling, how to parallelize equation (22.3.3) via a recursive subroutine. In Chapte
23, the utility routinepoly_term will implement just such a procedure. An example
of a routine that callpoly_term to evaluate a recurrence equivalent to equation
(22.3.3) iseulsum in Chapter B5.

Notice that while we could use equation (22.3.3), parallelized by recursive
doubling, simply to evaluate the polynomiBlz) = Py, this is likely somewhat
slower than the alternative technique of vector reduction, also discus$e@.i,
and implemented in the utility functigsoly. Equation (22.3.3) should be saved for
cases where the rest of tlf&'s (not just Py) can be put to good use.

=
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Synthetic Division by a Monomial

We now show that evaluation of the cumulants of a polynomial is equivalent
to synthetic division of the polynomial by a monomial, also caltieflation (see
§9.5 in Volume 1). To review briefly, and by example, here is a standard tableau
from high school algebra for the (long) division of a polynon®aP — 722 4+ x + 3
by the monomial factor: — 3.
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22— x — 2
x—3|22°— 722+ z+3
223 — 622
-2+ z
—2® 43¢
—2x+ 3
2246 E

— 3 (remainder) (22.3.4

Now, here is the same calculation written asyathetic division, really the same
procedure as tableau (22.3.4), but with unnecessary notational baggage omitte
(and also a changed sign for the monomial’s constant, so that subtractions beco
additions):

20 WO IU MMM/

a
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6 —3 —6
3] 2 =7 +1 43
2 -1 -2 -3 (22.3.5

If we substitute symbols for the above quantities with the correspondence

x| Co C1 C2 C3

Py P P, Ps (22.3.9

then it is immediately clear that th#e;’s in equation (22.3.6) are simply thfe;’s of
equation (22.3.3); the calculation is thus parallelizable by recursive doubling. In this
context, the utility routin@oly_termis used by the routingroots in Chapter B9.

Repeated Synthetic Division

It is well known from high-school algebra that repeated synthetic division of a
polynomial yields, as the remainders that occur, first the value of the polynomial,
next the value of its first derivative, and then (up to multiplication by the factorial
of an integer) the values of higher derivatives.

If you want to parallelize the calculation of the value of a polynomial and one or
two of its derivatives, it is not unreasonable to evaluate equation (22.3.3), parallelize
by recursive doubling, two or three times. Our routidwpoly in Chapter B5 is
meant for such use, and it does just this, as does the rautner in Chapter B9.

There are other cases, however, for which you want to perform repeated
synthetic division and “go all the way,” until only a constant remains. For example,
this is the preferred way of “shifting a polynomial,” that is, evaluating the coefficients
of a polynomial in a variable, that differs from the original variable by an
additive constant. (The reciggeeshft has this as its assigned task.) By way of
example, consider the polynomiat? + 22 + 42 + 7, and let us perform repeated
synthetic division by a general monomial- a. The conventional calculation then
proceeds according to the following tableau, reading it in conventional lexical order
(left-to-right and top-to-bottom):
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3 1 4 7

l l l l

3 % 3¢+1 % 3a2+a+4 5 33 +a?2+4a+7

l l l

3 % 6a+1 -2 92+ 2a+4

l l

3 % 9041

l

3

Here, each row (after the first) shows a synthetic division or, equivalently, evaluation
of the cumulants of the polynomial whose coefficients are the preceding row. The
results at the right edge of the rows are the values of the polynomial and (up t
integer factorials) its three nonzero derivatives, or (equivalently, without factorials)

coefficients of the shifted polynomial.

We could parallelize the calculation of each row of tableau (22.3.7) by recursive
doubling. That is a lot of recursion, which incurs a nonnegligible overhead. A
much better way of doing the calculation is to deform tableau (22.3.7) into the

following equivalent tableau,

3 — 3
al AN
1 — 3a+1 3
al AN a| AN
4 — 3a24+a+4 6a + 1 3

°] Nl N e N

7 — 3a®+a’+4a+7 9a% 4 2a + 4 9a + 1

Now each row explicitly depends on only the previous row (and the given first
column), so the rows can be calculated in turn by an explicit parallel expression,
with no recursive calls needed. An example of coding (22.3.8) in Fortran 90 can be
found in the routinecshft in Chapter B5. (It is also possible to eliminate most of
the multiplications in (22.3.8), at the expense of a much smaller number of divisions.
We have not done this because of the necessity for then treating all possible divisio

by zero as special cases. SBéfor details and references.)

:dny

(22.3.7

2/8-008-T B9 10 WO JU MMM/

N?SZVL

3 (22.3.9

) 610°8BpLqUIRI @ AIBSISN108IIP 0} [feWwd puas Jo ‘(Ajuo eauBwWY YUO|
‘aremyos sadioay [eauswnN Aq 966T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwed Aq 966T-986T (D) WbLAdoD

(0-6£725-T25-0 NgSI) Bunndwod aunusids 137TvHYd 40 WY IHL (06 NVHLHO4 NI S3dID3Y TvII4INNN woly abed sidwes

19Uy YLION @pIsIno

@0

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Actually, the deformation of (22.3.7) into (22.3.8) is the same trick as was used
in Volume 1, p. 167, for evaluating a polynomial and its derivative simultaneously,
also generalized in the Fortran 77 implementation of the rowdmly (Chapter
5). In the Fortran 90 implementation&ipoly (Chapter B5) welon't use this trick,
but instead uspoly_term, because, there, we want to parallelize over the length of

the polynomial, not over the number of desired derivatives.
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Don't confuse the cases @Erated synthetic division, discussed here, with the
simpler case of doing many simultaneous synthetic divisions. In the latter case,
you can simply implement equation (22.3.3) serially, exactly as written, but with
each operation being data-parallel across your problem set. (This case occurs in
our routinepolcoe in Chapter B3.)

Polynomial Coefficients from Roots

A parallel calculation algorithmically very similar to (22.3.7) or (22.3.8)
occurs when we want to find the coefficients of a polynonfitét) from its roots
r,...,ry. For this, the tableau is

1
ro !l
1+ T2 172
rs
ri+re 4713 rirg +r3(ry +re)  Tirers (22.3.9
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=

As before, the rows are computed consecutively, from top to bottom. Each row g
is computed via a single parallel expression. Note that values moving on verticala
arrows are simply added in, while values moving on diagonal arrows are muItipIiedg
by a new root before adding. Examples of coding (22.3.9) in Fortran 90 can be foundz

in the routinesrander (Chapter B2) angholcoe (Chapter B3).

Ip 01 |rel

3

An equivalent deformation of (22.3.9) is §
71 é

8

Tro @ Er

H

®

Q

r17T2 r1+ 1o <

2

@,

r3: &

=z

=]

3

r1TroTs 179 —+ 7’3(7’1 + TQ) T1 + ) —+ T3 (22310 5

@

Here the diagonal arrows are simple additions, while the vertical arrows represeng

multiplication by a root value. Note that the coefficient answers in (22.3.10) come
out in the opposite order from (22.3.9). An example of coding (22.3.10) in Fortran
90 can be found in the routintixrts in Chapter B13.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6.4, p. 470. [1]
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22.4 Fast Fourier Transforms 981

22.4 Fast Fourier Transforms

Fast Fourier transforms are beloved by computer scientists, especially those
who are interested in parallel algorithms, because the FFT’s hierarchical structure
generates a complicated, but analyzable, set of requirements for interprocesso

=

communication on MMPs. Thus, almost all books on parallel algorithms (e.g., §

=
=

[1-3]) have a chapter on FFTs. %
Unfortunately, the resulting algorithms are highly specific to particular parallel =

architectures, and therefore of little use to us in writing general purpose code in arg

architecture-independent parallel language like Fortran 90.

Luckily there is a good alternative that covers almost all cases of both serial
and parallel machines. If, for a one-dimensional FFT of &iz@ne is satisfied with
parallelism of ordex/N, then there is a good, general way of achieving a parallel FFT &
with quite minimal interprocessor communication; and the communication required g
is simply the matrix transpose operation, which Fortran 90 implements as an intrinsic 3
That is the approach that we discuss in this section, and implement in Chapter 812§

For a machine witll/ processors, this approach will saturate the processors (the §
desirable condition where none are idle) when the size of a one-dimensional Fourieg,
transform, N, is large enoughN > M 2. SmallerN’s will not achieve maximum
parallelism. But suchV’s are in fact so small for one-dimensional problems that
they are unlikely to be the rate-determining step in scientific calculations. If they
are, it is usually because you are doing many such transforms independently, an
you should recover “outer parallelism” by doing them all at once.

For two or more dimensions, the adopted approach will satdrafgocessors
when each dimension of the problem is larger tha.

=]
3
o
<]
o)
L
e
&
S

1@ (Ajuo eouBW

Column- and Row-Parallel FFTs

AIBSISND108IP O] |lewa puas

The basic building block that we assume (and implement in Chapter B12) is a
routine for simultaneously taking the FFT of eadw of a two-dimensional matrix.

The method is exactly that of Volume 1f»uri routine, but with array sections
like data(:,j) replacing scalars likaata(j). Chapter B12's implementation of
this is a routine calledourrow. If all the data for one column (that is, all the
valuesdata(i, :), for somei) are local to a single processor, then the parallelism
involves no interprocessor communication at all: The independent FFTs simply
proceed, data parallel and in lockstep. This is architecture-independent parallelis
with a vengeance.

We will also need to take the FFT of eactlumn of a two-dimensional matrix.
One way to do this is to take the transpose (a Fortran 90 intrinsic that hides a lof® =
of interprocessor communication), then take the FFT of the rows uRingrow,
then take the transpose again. An alternative method is to recodeule routine
with array sections in the other dimensiatata(j, :)) replacingfourl’s scalars
(data(j)). This scheme, in Chapter B12, is a routine calfedircol. In this
case, good parallelism will be achieved only if the valdesa(:,i), for somei,
are local to a single processor. Of course, Fortran 90 does not give the user direct
control over how data are distributed over the machine; but extensions such as HPF
are designed to give just such control.
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982 Chapter 22.  Introduction to Parallel Programming

On a serial machine, you might think thedurrow andfourcol should have
identical timings (acting on a square matrix, say). The two routines do exactly
the same operations, after all. Not so! On modern serial computets;row
and fourcol can have timings that differ by a factor of 2 or more, even when
their detailed arithmetic is made identical (by giving to one a data array that is the
transpose of the data array given to the other). This effect is due to the multilevel
cache architecture of most computer memories, and the fact that serial Fortran alwa;
stores matrices by columns (first index changing most rapidly). On our workstations,
fourrow is significantly faster thafiourcol, and this is likely the generic behavior.
However, we do not exclude the possibility that some machines, and some sizes
matrices, are the other way around.

y

)

oFu MMM/
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One-Dimensional FFTs

Turn now to the problem of how to do a single, one-dimensional, FFT. We are
given a complex array of length V, an integer power of 2. The basic idea is to
address the input array as if it were a two-dimensional array ofsizell, wherem
andM are each integer powers of 2. Then the componenfsoain be addressed as

f(Im+j), 0<j<m, 0<J<M (22.4.7)

where thej index changes more rapidly, tbeindex more slowly, and parentheses
denote Fortran-style subscripts.

Now, suppose we had some magical (parallel) method to compute the discret
Fourier transform

$Hhuas 1o ‘(Ajuo eausWY YUON) £22-2/8-008-T I[ed 10 w

F(kM + K) =) " M MHOUmEDN/(Mm) (1, 4 ),
g.J
0<k<m, 0<K<M (22.4.2

Then, you can see that the indidesind K would address the desired result (FFT
of the original array), withX varying more rapidly.
Starting with equation (22.4.2) it is easy to verify the following identity,

)

(22.4.3
But this, reading it from the innermost operation outward, is just the magical method
that we need:
e Reshape the original array t@ x M in Fortran normal order (storage
by columns).
e FFT on the second (column) index for all values of the first (row) index,
using the routinefourrow.
e Multiply each component by a phase factap[27ij K /(Mm)].
e Transpose.
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e Again FFT on the second (column) index for all values of the first (row)

index, using the routin€ourrow.

¢ Reshape the two-dimensional array back into one-dimensional output.

The above scheme usesurrow exclusively, on the assumption that it is faster
than its siblingfourcol. When that is the case (as we typically find), it is likely
that the above method, implementedfasir1 in Chapter B12, is faster, even on
scalar machines, than Volume 1's scalar versiofcafr1 (Chapter 12). The reason,
as already mentioned, is thadurrow's parallelism is taking better advantage of
cache memory locality.

If fourrowis not faster tharfourcol on your machine, then you should instead
try the following alternative scheme, usidgurcol only:

e Reshape the original array t@ x M in Fortran normal order (storage

by columns).

e Transpose.

e FFT on the first (row) index for all values of the second (column) index,

using the routinefourcol.

e Multiply each component by a phase factap|27ij K/(Mm)).

e Transpose.

e Again FFT on the first (row) index for all values of the second (column)

index, using the routin€ourcol.

e Transpose.

¢ Reshape the two-dimensional array back into one-dimensional output.

In Chapter B12, this scheme is implementedfasri_alt. You might
wonder whyfour1_alt has three transpose operations, wiidar1 had only one.
Shouldn’tthere be a symmetry here? No. Fortran makes the arbitrary, but consisten
choice of storing two-dimensional arrays by columns, and this choice favarsl
in terms of transposes. Luckily, at least on our serial workstatibms;row (used
by four1) is faster tharfourcol (used byfour1_alt), so it is a double win.

For further discussion and references on the ideas bébindl andfour1 _alt
see [4], where these algorithms are called the four-step and six-step frameworks
respectively.

CITED REFERENCES AND FURTHER READING:

Fox, G.C., et al. 1988, Solving Problems on Concurrent Processors, Volume | (Englewood Cliffs,
NJ: Prentice Hall), Chapter 11. [1]

Akl, S.G. 1989, The Design and Analysis of Parallel Algorithms (Englewood Cliffs, NJ: Prentice
Hall), Chapter 9. [2]

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2 (Bristol and Philadelphia: Adam
Hilger), §5.5. [3]

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.LAM.), §3.3. [4]
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22.5 Missing Language Features

A few facilities that are fairly important to parallel programming are missing
from the Fortran 90 language standard. On scalar machines this lack is not a
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984 Chapter 22.  Introduction to Parallel Programming

problem, since one can readily program the missing features by using do-loops.
On parallel machines, both SSP machines and MMP machines, one must hope
that hardware manufacturers provide library routines, callable from Fortran 90, that
provide access to the necessary facilities, or use extensions of Fortran 90, such as

High Performance Fortran (HPF).

Scatter-with-Combine Functions

Fortran 90 allows the use @&ctor subscripts for so-calledgather andscatter
operations. For example, with the setup

REAL(SP), DIMENSION(6) :: arr,barr,carr
INTEGER(I4B), DIMENSION(6) :: iarr,jarr
iarr
jarr

o
~ A~
~N

Fortran 90 allows both thene-to-one gather and thene-to-many gather,

barr=arr (iarr)
carr=arr (jarr)

It also allows the one-to-one scatter,
barr (iarr)=carr

where the elements afarr are “scattered” intdarr under the direction of the
vector subscriptiarr.
Fortran 90 doesot allow the many-to-one scatter

barr(jarr)=carr ! illegal for this jarr

because the repeated valuesjitrr try to assign different components edrr to
the same location ibarr. The result would not be deterministic.

Sometimes, however, one would in fact like a many-to-one construction, where
the colliding elements get combined by a (commutative and associative) operation

like + or *, ormax (). These so-calledcatter-with-combine functions are readily
implemented on serial machines by a do-loop, for example,

barr=0.
do j=1,size(carr)

barr (jarr(j))=barr(jarr(j))+carr(j)
end do

Fortran 90 unfortunately provides no means for effecting scatter-with-combine
functions in parallel. Luckily, almost all parallel machines do provide such a facility

as a library program, as does HPF, where the above facility is csiiledSCATTER.
In Chapter 23 we will define utility routinescatter_add andscatter_max for

scatter-with-combine functionalities, but the implementation given in Fortran 90 will

be strictly serial, with a do-loop.
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Skew Sections

Fortran 90 provides no good, parallel way to access the diagonal elements of
a matrix, either to read them or to set them. Do-loops will obviously serve this
need on serial machines. In principle, a construction like the following bizarre
fragment could also be utilized,

REAL(SP), DIMENSION(n,n) :: mat
REAL(SP), DIMENSION(n*n) :: arr
REAL(SP), DIMENSION(n) :: diag

arr = reshape(mat,shape(arr))
diag = arr(l:n*n:n+1)

which extracts everyn + 1)st element from a one-dimensional array derived by
reshaping the input matrix. However, it is unlikely that any foreseeable parallel
compiler will implement the above fragment without a prohibitive amount of
unnecessary data movement; and code like the above is also exceedingly slow
all serial machines that we have tried.

In Chapter 23 we will define utility routinegget _diag, put_diag, diagadd,
diagmult, andunit_matrix to manipulate diagonal elements, but the implemen-
tation given in Fortran 90 will again be strictly serial, with do-loops.

Fortran 95 (se§21.6) will essentially fix Fortran 90’s skew sections deficiency.
For example, using it§orall construction, the diagonal elements of an array can
be accessed by a statement like

08-T |[e9 10 Wod U mmmy/:dny

forall (j=1:20) diag(j) = arr(j,j)

SIMD vs. MIMD

Recall thatwe use “SIMD” (single-instruction, multiple data) and “data parallel”
as interchangeable terms, and that “MIMD” (multiple-instruction, multiple data) is
a more general programming model. (S@2.1.)

You should not be too quick to jump to the conclusion that Fortran 90's data
parallel or SIMD model is “bad,” and that MIMD features, absent in Fortran 90, are
therefore “good.” On the contrary, Fortran 90’s basic data-parallel paradigm has
lot going for it. As we discussed i§22.1, most scientific problems naturally have

a “data dimension” across which the time ordering of the calculation is irrelevant.
Parallelism across this dimension, which is by nature most often SIMD, frees th
mind to think clearly about the computational steps in an algorithm that actually nee
to be sequential. SIMD code has advantages of clarity and predictability that shoul
not be taken lightly. The general MIMD model of “lots of different things all going
on at the same time and communicating data with each other” is a programmin
and debugging nightmare.

Having said this, we must at the same time admit that a few MIMD features
— most notably the ability to go through different logical branches for calculating
different data elements in a data-parallel computation — are badly needed in certain
programming situations. Fortran 90 is quite weak in this area.

Note that thevhere. . .elsewhere. . .end where construction isota MIMD
construction. Fortran 90 requires thatthere clause be executed completely before
theelsewhere is started. (This allows the results of any calculations in the former

puqujeo@/ueslsnol:)eup 0] |lewad puas o ‘(Ajuo eauawy YLoN) gzn%g—o

o D
aplsmo) bio'a
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

(Eoﬁwv o

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

“aremyos sadiay [eauswinN Aq 966T-986T (D) WBUAdoD sweibold "ssaid Ausianun abpuqwe)d Aq 966T-986T (D) bLAdoD
(0-6£725-T25-0 NgSI) Bunndwod aunusids 137TvHYd 40 WY IHL (06 NVHLHO4 NI S3dID3Y TvII4INNN woly abed sidwes



986 Chapter 22.  Introduction to Parallel Programming

clause to be available for use in the latter.) So, this construction cannot be used to
allow two logical branches to be calculated in parallel.

Special functions, where one would like to calculate function values for an
array of input quantities, are a particularly compelling example of the need for
some MIMD access. Indeed, you will find that Chapter B6 contains a number of
intricate, and in a few cases truly bizarre, workarounds, using allowed combinations
of merge, where, andCONTAINS (the latter, for separating different logical branches
into formally different subprograms).

Fortran 95’sELEMENTAL and PURE constructions, and to some extent also
forall (whose body will be able to includ®RE function calls), will go a long way
towards providing exactly the kind of MIMD constructions that are most needed.
Once Fortran 95 becomes available and widespread, you can expect to see a n
version of this volume, with a much-improved Chapter B6.

Conversely, the number of routines outside of Chapter B6 that can be signifi-
cantly improved by the use of MIMD features is relatively small; this illustrates the
underlying viability of the basic data-parallel SIMD model, even in a future language
version with useful MIMD features.
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